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Image Sensor (IS) Market
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- IS sales amount has grown mainly by camera phone in this 10 years.
But, it became diminished in Q4, 2015.

- IS spreads into various applications, 
“Others” includes scientific, 
industrial, …

CCD image sensor
CMOS image sensor
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Pixel Shrinkage Trend 

・ Shrinkage speed becomes slower recently.
・ In 2015, 1 um pixel began to be mass produced.
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PPD 1. The P+ pinning layer 
prevents the interface 
from being depleted, and 
stabilizes the PD 
electrically.
 Low dark current
 Large saturation
 High sensitivity
 Electronic shutter
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2. Complete charge transfer
 No image lag
 No transfer noise

x: GR center
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Cause of Image Lag in Conventional PN PDs (1)
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The driving force is ψTG − VPD, or VGS.
(ψTG : TG channel potential)

Step 1.  At first, TG operates in the saturation region.
Step 2.  A few ns later, it enters the subthreshold region.

The subthreshold region causes image lag and transfer noise.

(m = 1 + CD / CG)
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Time evolution of  VPD is governed by the equation of continuity;

is derived as

CPD: PD capacitance
m: 1+CD/CG
I0 : constant

(nsig: signal electron 
number)

Causes of Image Lag in Conventional PN PDs (2)

=

when >>1 and n>>1

The nth frame lag, nlag(n), is obtained with 
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Image Lag in Conventional PN PDs (3) 

(N. Teranishi et al., IEDM, 1982)

Long tail image lag

Saturation

The subthreshold model matches the measurements! 

1st Frame

2nd Frame

3rd Frame

Frame Number
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(E) Traps at the TG interface
If the electron transfer path touches the interface, some electrons 
are captured by traps.
- Some of them are detrapped in the following frames, causing lag.
- Some of them are annihilated, causing non-linearity.  

Signal electrons at PPD
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With traps

- The signal electron annihilation exhibits this kind of non-linearity.
- A buried transfer path is needed to suppress these phenomena. 

x : Traps at the TG interface

Causes of Image Lag in PPDs (2)
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Transfer Noise in Conventional PN PDs (1)

The equation of continuity is

Average Noise

: Noise, δ (3)
The procedure to calculate the transfer noise is

Step 1: Obtain VPDa(t).
Step 2: Obtain Vn(t).
Step 3: Obtain the variance, <Vn

2> .

(1)

+ (2)
CPD: PD capacitance
m: 1+CD/CG
I0 : constant



©2016 N. Teranishi

15
Transfer Noise in Conventional PN PDs (2)

Transfer noise, <Vn
2>, is obtained as 

(4)

Not an exponential decay, and the convergence is slow.
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Transfer Noise in Conventional PN PDs (3)

When 
(5)

Caution: 
- This convergence is very slow, and the initial noise decay is 

also slow.
- If the TG ON period is 1 μs, we should not use this limit.

We should use (4) and calculate the value at t = 1 μs, 
considering the initial condition.
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Dark Current Reduction Mechanism by SRH (1)
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(Sze: “Semiconductor Devices,”
Chap. 1 Eq.(59))
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Schockley-Read-Hall Process
U: Recombination Rate

When Et=  Ei where U is maximum, then,

Small dark current !

Large dark current !

PPDs configure this non-depleted situation!

(1)

(2)

(3)
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Dark Current Reduction Mechanism by SRH (2)

(1) Estimate the interface dark current reduction ratio, assuming that:
- Hole density (p) at the P+ pinning layer: 1017 cm-3

- Intrinsic carrier density,  ni: 1.45 ✕ 1010 cm-3
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(2) Dark current comparison by image sensors.
Non-PPD (1982) PPD (2012) Unit

Scheme CCD FSI CMOS
Pixel size 23 x13.5 1.12 x 1.12 μm
Dark current 1,300 5.6 e-/s/μm2 at 60℃

0.4 %
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PPDConventional PD

If the dark current is reduced, the dark current FPN and 
dark current shot noise will also be reduced.

Example of Dark Current Reduction (1)

The dark current FPN is suppressed, therefore, picture quality 
is much improved. 
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Incident Light
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A Question About the Dark Current Reduction Mechanism

Even if the P+ pinning layer neutralizes the interface states, the N-type PD 
is still depleted nearby the P+ pinning layer. 
The assumption of “spatial uniformity,” which is implicitly used in SRH,
is not realistic!

The N-type PD is depleted.

To understand the effects and limitations of PPDs, a new, correct 
model is needed.

4Tr CMOS Sensor Cross Section
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xxn

GR Centers

Modified Diffusion Current Model:
・ 1-Dim (Along                   )
・ Put the GR centers at x= - xGR in the neutralized region.
・ Assume still “stationarity,” but no more “spatial uniformity.”
・ No electric field in the neutralized region. Low injection.
・ Use the same notation of Sze’s “Semiconductor Devices.” 
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A New Model Including Non-Spatial-Uniformity
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Introduce the GR centers’ effect into the diffusion equation:

・ G: Intensity of the GR Centers. Unit is 1/cm. 
GLn is a dimensionless parameter for the GR centers’ intensity.

New Diffusion Current Model with GR Center

(3)0)()( 0
0
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(4)

・ At  x = - xGR, the GR centers force np toward np0, the equilibrium.

Boundary Conditions:
・ Same as in the diffusion current model without GR centers

0pp nn  xat
kTqV

pp enn 0 pxx at (5)

nnn DL  : Diffusion Length
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Diffusion Current (Dark Current) without GR Centers

(6)

(7)

Derived Solution

Diffusion Current (Dark Current) with GR Centers

EDCF: Extra Dark Current Factor
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GLn: Dimensionless Parameter for the GR Centers’ Strength

EDCFxJxJ pnp
GR

n  )()( )0()(

where

nnn DL  : Diffusion Length
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Characteristics of the New Diffusion Current Model

When GLn→∞, then,
npGR Lxxe

EDCF )(1

1




No divergence; instead, saturation.
kTE

n
GR

n
geJJ  )0()(

When (xGR − xp)/Ln = 0, 
GR centers become not
neutral; EDCF = GLn+ 1

Ln

xGR-xp

When GLn→ 0,  Jn
(GR) → Jn

(0)

Reasonable.

Temperature dependence:  

When (xGR − xp)/Ln →∞, EDCF → 1.
The  GR centers’ effect becomes negligible.

= 0
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When (xGR − xp)/Ln → 0, EDCF increases, because the GR centers’ 
position approaches the depletion region. 

Characteristics of New Diffusion Current Model (2)

When (xGR− xp)/Ln →∞, EDCF → 1.
The GR centers’ effect becomes negligible.
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Is the P+ Pinning Layer Thickness Sufficient? 

・ How large is the diffusion length, Ln, in the P+ pinning layer?
・ The surface dead zone depth, L1, might be a good alternative for Ln.
・ L1 is derived from the spectral response, to be ~0.08 μm.
・ P+ pinning layer thickness ≈ 0.05 – 0.5 μm 

The GR centers at the silicon surface possibly contribute to the dark 
current! We should reduce the GR centers.

(SONY ICX658ALA data sheet
Pixel size: 6.35 x 7.4 um)

D
ep

th

Surface 
dead zone

Sensitive zone
(Depleted zone)

Deep dead zone
(PD thickness is limited by
P+ substrate, or
VOD barrier)

L1

L2

Light 
intensity

x: GR center

xx x

Incident light
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Macroscopically Flattening

Itonaga et al. (Sony), IEEE IEDM, 2011

No isolation grooves/ridges and no substrate etching as in STI 
Less process damage, less stress and no STI side surface.

Dark CurrentStructure of “FLAT,” comparing with STI

STI
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Atomically Flattening
Kuroda et al. (Tohoku Univ.); “Highly Ultraviolet Light Sensitive 
and High Reliable Photodiode with Atomically Flat Si Surface” 

AFM Images
Typical (100) after RCA Cleaning.

Atomically Flat (100).
Atomic step is 0.135nm.

・ Atomically flat surfaces reduce GR centers/traps.

N+PN PD

- Low Dark Current, High QE for UV at PD.
- Low 1/f noise at MOS Tr.
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Vertical Overflow Drain (VOD) Shutter

For Anti-blooming and electronic shutter
・ The VOD is used in CCD image sensors
・ TG is used as LOD (lateral overflow drain) in CMOS image sensors.

Blooming Electronic Shutter
(Object is rotating at 720 rpm.)

1/60 s 1/125 s 1/250 s

1/500 s 1/1000 s 1/2000 s
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VOD Structure and Mechanism

P+ P+P+ N
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VCCD

Low Voltage
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P+ Pinning Layer

N-PD 

P-Well (Barrier)

N-Substrate

Excess electrons

All electrons

Pixel cross section Potential profile along the blue line

e-

e- VWell
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High Speed Shutter (1) 

Definitions
・ High speed shutter: Short exposure time / sharp shutter
・ High speed camera: High frame rate

Motivations of high speed shutter
・ High speed motion capture, ToF, fluorescence life time imaging.
・ Replace the streak tube and gated image intensifier.    

Shutter speed is limited by:
(1) Photo-generated carrier collection time into the PD storage region.
(2) Driving pulse delivery time, C ✕ R.
(3) Carrier transferring time from the PD storage to analogue memory 

in the pixel.

・ The VOD shutter mechanism with PPD has a merit on item (2).
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VOD shutter
・ Substrate capacitance

d
SKCSub

0Si    


High Speed Shutter (2) --- Load Capacitance ---

where,
KSi: Si dielectric constant
ε0: Permittivity in vacuum
S: Area, 
d: distance (depletion thickness)

For example, 1/3 inch
S = 28 mm2

d = 7.5 μm
Csub = 400 pF           

LOD shutter
・ Gate capacitance, Cgate,
+ parasitic capacitance of wires, Cwire

t
WLKNC Gate

0SiO2
pixel    



where, Npixel: Pixel number
Ksio2: SiO2 dielectric constant
W: Channel width, 
L: Channel length, 
t: Gate SiO2 thickness

For example, Npixel = 1.3 M,
W = L = 0.4 μm, t = 6 nm

CGate = 1,200 pF 
CWire = ?  

The load capacitance of the VOD shutter is smaller 
than that of the LOD shutter.
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High Speed Shutter (3) --- Parasitic Resistance

・ A small parasitic resistance and small variations of the parasitic 
resistance are achieved with (b) backside feeding.

・ A skew smaller than the measurement accuracy limit (0.2 ns). 

Two methods for driving pulse delivery:  
(a) From the periphery (b) From the backside

(E. Tadmor et al., 2014 IEEE Sensors)

N-substrate
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Visible Light Photon Counting Image Sensor

SPAD 
(Single photon avalanche diode)

4-Tr CMOS + High conversion gain +
CMS (Correlated multiple sampling) 

(N. Dutton et al., VLSI Symposium 2014)

n=0

n=1 n=2

n=3

n=4

n=5
n=6

n=7

・ QVGA (320x240 pixel) SPAD, 20 fps, 
at room temperature, at night

・ High avalanche gain makes following
circuit noise negligible.
・ Large dark count. Small fill factor

・ In 2015, several organization reported
low noise < 0.3 e- rms.

ref. DEPFET (Max Plank) uses CMS.

39

(MW. Seo, S. Kawahito et al., IEEE EDL 2015)

128 samplings
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Conclusion

1.  The PPD is a primary technology for CCD and CMOS image sensors.
It exhibits low noise, low dark current, no image lag, large saturation, 
high sensitivity, and allows electronic shutter operation.

2. Conventional non-PPDs have long tail lag and transfer noise.

3. A new diffusion dark current model considering the GR centers is 
proposed. If the P+ pinning layer is thin compared with diffusion length, 
they contribute to the dark current.
The temperature dependence is                         . 

4. Both macroscopiccally and atomically flatness of the silicon surface 
reduce the dark current.

5. VOD shutters with PPDs are capable of high speed shutter operation.
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